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ABSTRAC1’

Pulse mode sonar operation is analyzed under the

physical hypotheses that

The medium is a stationary homogeneous fluid .

Both the sonar system and the scattering objects

are stationary.

The scattering objects are rigid bodies.

The scattering objects lie in the far fields of the

transmitter and receiver .

it is shown that if the sonar signal waveform in the far field is

t,8) x = ixIO

then the sonar echo waveform in the far field is

e(!xI - t , O) 
, ~~ 

=

lxi

where

e(T,O) Re w exp(iTw) J T~ (wO ,wO ’)~ (w ,e ) dO ’dw
ie ’l=l

Here ~(w,e) is the Fourier transform of s(t,O) with respect to

• T and T~(wO ,wO’) is the differential scattering cross section of

the scattering objects. 
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§1. INTRODUCTION. This paper deals with pulse mode sonar echo prediction; that

is, the calculation of sonar echoes when the characteristics of the transmitter,

scattering objects and ambient medium are known. The physical hypotheses are

• The medium is a stationary homogeneous unlimited fluid.

• Both the sonar system and the scattering objects are stationary.

• The scattering objects are rigid bodies.

The analysis is based on the theory of scattering for the wave equation developed

in the author’s monograph [51 . The principal result of this paper is an asymptotic

calculation of the echo waveform, valid when both transmitter and receiver are in

the far- field of the scatterers. The results show that, in this approximation,

the dependence of the echo waveform on the scatterers is determined by the S-matrix

of scattering theory. The work is a sequel to the author’s article [6] where

similar results are derived for plane-wave signals.

THE BOUNDARY VAWE PROBLF~4. in what follows x = (x1,x2,x3) E denotes the

coordinates of a Cartesian system fixed in the medium and t E R denotes a time

coordinate. The acoustic field is characterized by a real-valued acoustic potential

u(t,x) which is a solution of the wave equation

(1.1) - = f (t ,x)

The function f , which characteri zes the transmitter, will be called the source

function. The scattering of a single pulse of duration T , emitted by a

transmitter localized near a point x0 , will be analyzed. Hence, the space-time

support of f is assumed to satisfy

• (1.2) supp f C {(t,x)I t0 ~~ t ~~ t0 + I and lx -x 0 1 
~

where and t0 are constants. The scatterers are represented by a closed
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bounded set r C R3 with complemont c~ = R3-r . The comon boundary ~F =

is assumed to be a smooth surface. It will be convenient to let the origin of

coordinates lie in r and

(1.3) r C {xI lx i ‘
~~ ~}

It is also assumed that

(1.4) ~ + 60 <

(the transmitter and scatterers are disjoint) and

(1.5) T <  lx0 l-6-6 0

(the sources cease acting before the signal reaches the scatterers) .

The total acoustic field produced by the transmitter in the presence of the

scatterers r is the solution u(t ,x) of (1.1) in flxc~ that satisfies the

boundary condition

(1.6)

for (t ,x) E Jb~ c2 , where ~ is a normal to ~Q 
, and the initial condition

(1.7) u(t ,x) = 0 for t < t o and X E  ~

The corresponding signal field u0(t ,x) , generated by f(t ,x) when no scatterers

are present , is given by the retarded potential

• (1.8) u0(t ,x) = 

‘R~ 

f(t 1x~x~~,x’) dx ’

where dx ’ dx~dx~dx~ . The sonar echo u~ (t ,x) produced by the source function 

~•• - -• •~~~~~~~~~~~~~~~~~ ---- -- - • •-—
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the scattere:: f ~ :::::~~:~~ ,x) , 
t E R , 

‘
x ~ 

~

Both supp u0(t, ) and supp u(t,.) are contained in {xl ix-x 0 1 ~ t-t0 + 6~}

which is disjoint from r for t-t0 + ~~ (x 0~ -c5 . It follows that

(1.10) u5(t ,x) = 0 for t ~~ t0 
+ (x 0 I --6- ~S0 and x €  Q

The goal of this paper is to calculate u5(t,x) , especially in the far field

:) x )  >> 1) and to analyze its dependence on the source function f and the

scatterers r .

§ 2. ThIE WAVE OPERATORS AND PULSE MODE SONAR E(X) STRIJC11JRE. The starting point

for the calculation of u5(t ,x) below is a construction of u(t,x) in the L-Lilbert

space L2(c~) . To describe it let

H ‘ (2.1) L~(c~) = (U(x)~D
au(X) E L2 (~ ) for 0 ~ ~ m}

where a = (a1,a2 , a3) I~ 
÷
~2~~3 

and Da a IaI ,ax~1~x
a2ax~3 . Then the

operator A : L2 (Q) -+ L2ffl) defined by

(2.2) D(A) = L~(~) (~ j~u i~ u/~v = 0 on ~~}

(2.3) Au = -V 2u for all u E D(A)

is selfadjoint and non-negative ; see [Si for details. The solution of the initial-
- 

• boundary value problem (1.1) , (1.6) , (1.7) is given by Thihamel’s integral [6]:

(2.4) u(t,.l {A 1’2 si.n(t-r)A~~
2}f(T, )dT , t ~ to
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In particular, for t >  to + T

t +T
(2 .5) u(t , )  = J {A 1’2 sin(t~T)AV2 }f(T , )dT = Re~v(t , •)}

H to
H

where

t +T

(2. 6) v(t ,•) — i j A
]I~2exp {_ i(t_T)Ahi2}f(T ,.)dT = exp {-itA~’

12 }h
to

and

t +T
(2.7) h i 

~ 
A 112 exp{1TA1”2 }f(T ,’)dT

to

In the special case where ~ = (no scatterer) the operator A will be denoted

j by A0 . Thus A0 : L2 (~
3) ÷ L2(R3) , defined by D(A0) = L~ (~

3) and A~u -t~u ,

• is selfadjoint in L2(~
3) and the signal u0(t,

x) is given by

(2.8) u0 (t , .’) = Re{v0(t , ’)} , t > t0 + T

where

(2.9) v0(t , )  = exp{-itA~
”2 }h0

and
t + T

(2.10) h0 — i ~~l/2 exp{itA~’12}f(t , ) dt

• I To ccmpare u(t ,x) and u0(t ,x) introduce the operator J L2 (cl) ÷ L2 (~
3)

defined by 
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j (x)h(x) for x E ç2
(2.11) Jh(x) =

0 for xER 3-1~

where j  E C
(0

(R3) , 0 ~ j ( x) ~ I , j (x) = 1 for lx i > ~ and j (x) = 0 in a

neighborhood of r . J is a bounded operator with bound I JII = 1 . It will be

convenient to extend the definition (1.9) of u~ by defining u5(t,x) = Re{v5(t ,x) }

where

(2.12) v5(t ,x) = Jv(t ,x) -v0 (t ,x) , t E f l  , x E R 3

The calculation of the far field form of u5(t,x) will be based on the

theory of wave operators as developed in [5]. The wave operators W.~. and W are

• defined by the strong limits

• (2.13) W~ ~ ~~‘~ ‘ e~~{itA~~
2}J e~~{-itA~~

2}

It is shown in [5] that these limits exist and define unitary operators

W , L2(~ ) -
~ L2~I~

3) . It follows that for each h E L2 ffl)

(2.14) Jv(t , •) = J exp{- itA~~
2
}h = exp{-itA~~

2} W~h + o~
(l) , t +

where 
~~~~ 

denotes an L2~~
3)-va1ued function of t that tends to zero in

L2 (R3) when t -
~~ ~ . (2.14) and (2.9) imply that

• (2.15) v5(t,•) 
= exp f - i tA~~

2 }(W ~h-h 0) + 

~~~~~ 
, t -

~

• This result is used below to calculate the far field form of u5(t ,x) = Re{v5(t ,x) }

I ~~~~~~~~~~~~~~~ ~~~-~~~~~~-~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~ • -  
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§3. ThE FAR FIELD APPROXIMATION AND THE SCATFERING OPERATOR. The scattering

operator for the scatterer r is the unitary operator S in L2(~
3) defined by

(3.1) S = W 4 W~

where W~ denotes the adjoint of W . A connection between S and the

approximation (2.15) will be derived by calculating the relationship between h

and h0 . Equation (1.10) implies that v5(t,x) = 0 for t0 +T ~~t<t 0 + 1x01 5 6 0
and x E R3 

. It will be convenient to choose

• (3. 2) t0 = -Jx0~ + 6~ + ~5

so that the arrival time of the signal at r is non-negative; see (1.10) . With

this convention

(3.3) J expC~itAL’2
}h = exp{-itA~

’2 }h0 for t1 ~ t ~ 0

where

r
(3.4) t j = to + T = - 1x 0 1 + 6o + 

~ 
+ ~~

‘

Taking t = 0 in (3.3) gives Jh h0 while taking t = t1 gives

(3.5) exp{it1A~”2 }J exp{~ it1AVZ }h = h0

The scatterer r is in the far field of the transmitter if ~x0~ >> 1 or, by (3.4),

• t1 << -1 . Combining this with (3.5) and the definition (2.13) gives

(3.6) - W h  + 0 (1) x0 1 
:

4 
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where °
~~ 

(1.) is an L2 (1~
3) -valued function of x0 that tends to zero in L2 (~

3)
0

when lx0 l + . Multiplying (3.6) by S gives

• (3.7) W~h = Sh0 + o,~ (1) 1 x0 1
0

because W~W = 1 (W is unitary). Combining (3.7) and (2.15) gives

(3.8) v .(t ,.) = exp{-itA1’
12}(S-1)h + o (l)+o (1)0 0 t

Note that the term ox (1) tends to zero in L2 (R
3) when I x0 + ~~ uniformly

in t because exp{-itA~
’2} is unitary. Equation (3.8) shows that, in the far

field approximation, the dependence of the echo waveform on the scatterer is

determined by the scattering operator.
1

The approximation (3.8) is used in §6 to derive an explicit integral fornula
I

for the far field echo waveform. The derivation is based on a la~own integral

-~ representation for S , fornvlated in §4, and the theory of asymptotic wave

functions of [5] which is sumarized in §5.

§4. THE STRUC’IlJRE OF THE SCAT~ERINC OPERATOR. The steady-state theory of

scattering and associated eigenfunction expansions for A are reviewed briefly

in this section and applied to the construction of the scattering operator for

A0 is a selfadjoint operator in L2~~
3) with a purely continuous spectrum

and the plane waves

1
- • • •~~~~~~~~ • • •~~~~~~~~~~~~~~~~~~~ •~~~~~_ -•.——- •—
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(4.1) w0(x ,p) = (2Tr)
_31*’2 expUx•p , p E

are a ca~ilete family of generalized eigenfunctions. The corresponding eigen-

function expansion is the well-known Piancherel theory of the Fourier transform

(see [5] , Ch. 6).

Generalizations of the Plancherel theory to acoustic scattering by bounded

objects were first given by N. A . Shenk [2] and Y. Shizuta [4]. In this work

the generalized eigenfunctions are the distorted plane waves

(4.2) w~(x,p) = w0(x,p) + w~(x,p) , x E Q 
, p E R 3

which are characterized by the properties that w~(x,p) is locally in D(A)

(i.e., ~w~(•,p) E D(A) for all ~ € C~~~
3)) ,

(4.3) 

::

+1P1

.

2

~~~~~

:

~~~~ 

= o for x E ~

(4.4) ~~‘ ~pIw÷ = O(
ix t

Z) lx i +

For the existence, uniqueness and construction of w± (x,p) see [2,3,4,5,6]

Physically, w~(x,p) is the steady-state scattered field produced when the

plane wave (4.1) is scattered by r . It has the far field form [5,6]

±i~p I lx i
(4.5) w~(x ,p) = 

e 
4 1 1  T+(lp J O ,p) + 0( 2) ‘ lx i +

where 0 = x/ Ix I  . T± (p ,p’) , the ecattering amplitude or differentia l scatter ing

cross auction of r , is defined for all p and p ’ in R3 such that (P1 - Ip ’ I
and has the symetry properties
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(4.6) T~(p,p’) = T~ (-p ’ ,-p) = T I 3 T1 5T T (-p , -p ’)

where the bar denotes the complex conjuga te.

The connection between S and T~ (p,p’) is based on the eigenfunction

expansion theorem for A . The latter states that for all h E L2 (c~) the

limits

(4 .7) i~÷ (p) = (~~h) (p) = L2~~
3)-lim J w~(x ,p) h(x)dx

exist, where = ~2 
fl lxi l x i <M} , and

(4.8) h(x) = L2 l~ )-1~m J w~(x,p)S~ (p)dp
I p I < M

?vbreover , the operators ~ç L2(c2) L2cR
3) are uni tary and for each ‘.ounded

measurable function ~(A ) on A ~ 0

(4 .9) (~~y (A)h) (p) = ~( l p I 2 )~+h(p)

The Fourier transform will be denoted by

(4.10) h(p) (~h)(p) = L2(1~
3)-lim w0(x,~J h(x)dx

l x r <M

An exposition of the eigenfunction expansion theory is given in [5]. In what

follows the relations (4.7), (4.8) are written

(4.11) ~~(p) 
= J ~jx,p) h (x)dx

I’ -~~~- •~~—•- • -~~~~~~----- ~~~ ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _
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(4.12) h (x) = J w~(x ,p)h~(p)dp

R3

for brevity. However, the integrals are not convergent , in general,and (4 .11) ,

(4.12) must be interpreted in the sense of (4.7), (4.8).

The wave operators W.,. defined by (2.3) are known to have the representations

[5]

(4.13) = , W_ =

Combining (4.13) and (3.1) gives the representation

* *“
(4.14) S = W ~W = ~~ S~

I

J where the operator

(4.15) S =

is called the S-matrix for the scatterer r . The operator s_ I has the inte-

gral representation

(4.16) (~-1)h(p) = i1p112 J T÷(p,IpI0’)~(ipi0 ’)d0’
2(2ir) ‘ 2S

whose kernel the differential scattering cross section of r . The integration

in (4.16) is over the points 0’ of the unit sphere S2 in R3 
. The first

proof of (4.16) for acoustic scattering is due to Shenk [2].

§5. PULSE !4)DE SONAR SIGNALS IN ThE FAR FIELD. The signals u0(t,x) origi-

nate in the region lx-x01 
~ 

and reach points x in the far field, charac-

---- —--- -•- ---- --_--
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terized by lx-x01 >> 1 , after a time interval of magnitude comparable with

• x-x01 . Hence the far field form of u0(t ,x) coincides with its asymptotic

form for large t . The latter is provided by the theory of asymptotic wave

functions developed in [5]. The theory is applied here to determine the far
S

field form of u0(t,x)

The complex wave function v0(t ,x) defined by (2.9), (2.10) has the Fourier

representation

(5.1) v0(t,x) = (2i~Y
3”2 J exp{i(x.p-tJpI)}h0(p)dp

Equations (2.10) and (4 .9) imply that

(5.2) h0(p) = (21r) h / 2  i I p ~~ f ( - I p I , p)

where

(5.3) ~(~~p) = (2,iY 2 J exp{-i(tw+x•p) }f(t ,x)dtdx

is the 4-dimensional Fourier transform of f . Note that (5.2) suggests the

concept of a non-rzdiating source function . f is said to be non-radiating if

(5.4) f(t ,x) = 32u0/~t
2-V2u0 , supp u0 bounded in R4

In this case ~i0(w ,p) exists and (5.4) is equivalent to

(5.5) f(w,p) = (1p1 2-w2)u0(w ,p)

Equations (5.2) and (5.5) imply 1i0 (p) = 0 and hence u0(t,x) = 0 for
a

I I
L_

_ _ _ _  _ _ _ _ ___________________________________________ -~-—-—~ — — - - — - — - — -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~ —-
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The asymptotic wave function associated with u0(t,x) = Re{v0(t ,x) } is

defined by
I

(5.6) u~(t,x) = s(IxI-t ,0)/fxI , x = fx fe

where s E L2(~ 
x S2) is defined by (see [5], Ch. 2)

s(T,e) = Re {(211)
_h /’2 J exp{ita}(-iw)h0(tuo)dw}

0

(5.7)
= Re { J exp{irw}f(_w,wO)dw}

Direct calculation of s(T ,O) from (1.8) yields the alternative representation

J (5.8) s(r ,0) = 

~~ J f(-t+0 .x ,x) dx

R3

It was shown in [5] that u~
’ describes the asymptotic behavior of u0 in

L2~~
3) for t+oc,:

(5.9) u0(t,’) 
= u(t,.) + 

~~~~ 
, t +

The integral

(5.10) E(u,K,t) = 

~.J {IVu(t,x)12 + (~u(t,x)/at)
2}dx

may be interpreted as the acoustic energy in the set K C R3 at time t

It was shown in [5] that if h0 E L~(~
3) then u(t,x) converges to u~(t ,x)

in energy when t -~ co . ~~re precisely ,
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(5.11) au0 t~x)/ax~ = u~~~(t x) ~~~~~~ 
, t + , j  = 0,1,2,3

where x0 t ,

:1
(5.12) u~~~(t~x) = s~(Ixl-t~0)/ixl

(5.13) s0 (r ,O) =

and

(5.14) s~(T~0) = -e~ 0e~o) for 5 = 1,2 ,3

The result (5.11) was used in [5] to calculate the asymptotic distribution

1 
of energy in cones

(5.15) C = {x = r eJ r >  0 , 0 € C0 C S2 }

Applying the results to the signal u0(t,x) generated by f(t,x) gives

(5.16) E(u0,C,~) = u r n  E(u 0, C ,t) = 

~ J ~f(-IpI,p)I
2dp

t-~-oc) c

In particular, the total signal energy introduced by the source function f is

(5.17) E(u0~R3
,co) = 

~ J lf(-IpI,p) I
2dp

R3

§6. PULSE !‘ODE SONAR ECHOES IN TI-fE FAR FIELD. Equation (3.8) implies that

the echo u5(t,x) satisfies



T 

I
(~.l) u5(t,•) = Re~exp(-i~~

’2)(S-l)h0} ~~~~~ ~~~~~~

The first term on the right has the same form as the signal but with h~ re-

placed by (S-l)h0 . It follows from the results of §5 that

(6.2) u5(t ,x) = u;(t,x) 
~~~~~~ 

+ O~ (l)
0

where

(6.3) u;(t,x) = e (lxJ-t ,0)/ixl , x = ix ie

and

(6.4) e(r,0) = Re{(2~)~~~
2 f ~~~~~~~~~~~~~~~~~~~~~~~~~~

Now by (4.14)

(6.5) ((S-1)h0) = flS_1)~*~hQ = (S-1)I~

• and hence by (4.16)

(6.6) ((S_ l)h 1J)
A

(w0) = 

2(2,T)1~
’2 J T~ (uO ,w0’)h0 (w0’)d0 ’

Combining (6 .4) and (6.6) gives

(6.7) e(t,8) = Re { J exp(itw)w2 J T+ (wO ,wO’)h 0 (wO ’)dO ’dw}
0

Finally, by (5.2)

(6.8) e(r ,0) = 

2(2~)~~Z 
Re J exp(itw)w J T+(wO ,wO’)f(-w,wO’)dO’dw} 

• - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~---~~~~~~~~~~~~~ -~~~
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Equation (6.2 )  implies that u gives the far field form of u5 . For

1x01 >> l,~ is in the far field of the transmitter and the term o~~(l) is

small , uniformly for all t . For receivers in the far field region lxI>>1

for r , the echo u5(t,x) arrives at times t >> 1 and hence the term o
~
(l)

is small.

§7. CONCLUDING RFI4ARKS. Actual sonar transmitters do not, of course, generate 
• 

-

•

4 signals by means of a source function f(t,x) . However, the purpose of a

well designed transmitter is to generate a signal with a prescribed waveform

S(T,0) . Now

l/2~(7.1) s(u~,0) = 
- 1/2 J exp(-iwT)s(1,0)th = {~J f ( -~ ,w0)

• (2ir)

(see (5.7)) and hence

(7.2) e(-r ,0) = Re { 
~ J ex (iTo)t~ J T+(t~0,u0’)s(w,0’)d0’dtü}

0 s2

In particular , the transmitter characteristics influence the echo waveform only

through s (-r ,0) . Hence, (7.2) is applicable to real transmitters with known

waveforms s(r ,0)

it is known that T~(~0 ,w8’) is a meromorphic function of w with poles

in the lower half plane [31. The other functions in the integrand of (7.2) are

entire holomorphic functions. Hence, the integral in (7.2) can be transformed
/

by deforming the contour of integration in the complex w-plane. This leads

to an expansion of the echo waveform of the type occurring in the singularity

expansion method [1]. 

• • •~
_ 

~~~~~~~~~~~~~~~~~~~~~~ - - - •_ • • -
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Pulse mode sonar operation is analy zed under the physical hypotheses that
the medium is a stationary homogeneous fluid.
Both the sonar system and the scattering obj’ects are stationary.
The scattering objects are rigid bodies. o~—~~
The scattering objects lie in the far fields of the transmitter
and receiver. ~~~~~~~~~~~~~~~~~~~~~~~~

It is shown that if the sonar signal waveform in the far field is

LI 1  
t,0) 

, x = I x t O

then the sonar echo waveform in the far field is

~thf~~~i~J , x = Ix i e

where

e(r,0) = 
Re{~ J ~ exp(ii~) J T4 (w0 , M1~ (w ,O ’ )de 1d~

} 

.

-~ 
O’ l=l 

.Here s(w ,0) is the Fourier transform of s(-r ,O) with respect to i- and T+(~
a,~

ie’)
is the differential scattering cross section of the scattering objects.
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